Posted on whitman county court clerk

how to simplify expressions with exponents calculator

Simplifying Expressions Calculator is a free online tool that displays the simplification of the given algebraic expression. It helped me pass my exam and the test questions are very similar to the practice quizzes on Study.com. So why waste time and energy struggling with complex algebraic expressions when the Simplify Expression Calculator can do the work for you? We have 1/3 times x^(2-4), which is -2, times y^(9-9), which is y^0. 9y + 3 4x 2y 3x 5. This tool is designed to take the frustration out of algebra by helping you to simplify and reduce your expressions to their simplest form. Math is a subject that often confuses students. By simplifying the expression, you can eliminate unnecessary terms and constants, making it easier to focus on the important parts of the equation and work through it step by step. Therefore, x (6 x) x (3 x) = 3x. This Simplify exponents expressions calculator supplies step-by-step instructions for solving all math troubles. To find the product of powersMultiplication of two or more values in exponential form that have the same base-. Write each of the following products with a single base. This calculator will solve your problems. Here is an example: 2x^2+x (4x+3) EXAMPLE 1. Click the blue arrow to submit. Remember, we're simplifying using positive exponents, so we need to change x^-4. The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. Simplifying Radical Expressions replace the square root sign ( ) with the letter r. show help examples Preview: Input Expression: Examples: r125 8/r2 (1+2r2)^2 Let us learn more about simplifying expressions in this article. What Are the Five Main Exponent Properties? Various arithmetic operations like addition, subtraction, multiplication, and division can be applied to simplify . There are rules in algebra for simplifying exponents with different and same bases that we can use. Using the Power Rule to Simplify Expressions With Exponents. Consider the expression [latex]{\left({x}^{2}\right)}^{3}[/latex]. Step 2: Click the blue arrow to submit and see the result! Remember, it will take time and practice to be good at simplifying fractions. Simplifying expressions with exponents In the term , is the base and is the exponent. In this expression, 6x and -3x are like terms, and -x2 and x2 are like terms. Free simplify calculator - simplify algebraic expressions step-by-step. To simplify your expression using the Simplify Calculator, type in your expression like 2 (5x+4)-3x. MathHelp.com Simplifying Expressions Simplify a6 a5 The rules tell me to add the exponents. [latex]\frac{t^{8}}{t^{8}}=\frac{\cancel{t^{8}}}{\cancel{t^{8}}}=1[/latex], If we were to simplify the original expression using the quotient rule, we would have. Exponentiation is a mathematical operation, written as an, involving the base a and an exponent n. In the case where n is a positive integer, exponentiation corresponds to repeated multiplication of the base, n times. A valid expression needs to contain numbers and symbols, Experts will give you an answer in real-time, Calculating prices using discounts worksheet, Finding point slope form with two points calculator, How to solve inequalities with variables in the denominator, Straight line postcode distance calculator, Time and work difficult questions for cat. A fully demonstrated steps by steps solution of a numerical (not a question), awesome makes life easy and has saved me an enormous amount of time the app is worth 20 dollars a month. When [latex]mn[/latex]. simplify rational or radical expressions with our free step-by-step math First Law of Exponents If a and b are positive integers and x is a real number Deal with math question Math is a subject that often confuses students. Contains a great and useful calculator, this is one of the best apps relating to education no other app compares with this app it helped me to understand my work better it even shows how it was worked out I recommend to 7 of my friends and they are happy about this app. 24 minus 20 is 4. Multi-Step Equations with Fractions & Decimals | Solving Equations with Fractions. Our support team is available 24/7 to assist you. But it may not be obvious how common such figures are in everyday life. You need to provide a valid expression that involves exponents. Factoring can help to make the expression more compact and easier to work with. Open up brackets, if any. If we keep separating the terms and following the properties, we'll be fine. Simplify Expressions With Zero Exponents. We start at the beginning. This can help you to develop a deeper understanding of math and how it applies to the real world, which can be useful in a variety of fields such as science, engineering, and finance. Return to the quotient rule. Notice that the exponent of the quotient is the difference between the exponents of the divisor and dividend. Solution: By using the rules of simplifying expressions, 4ps - 2s - 3(ps +1) - 2s can be simplified as. For any real number [latex]a[/latex] and natural numbers [latex]m[/latex] and [latex]n[/latex], such that [latex]m>n[/latex], the quotient rule of exponents states that. Expressions can be rewritten using exponents to be simplified visually and mathematically. In a similar way to the product rule, we can simplify an expression such as [latex]\frac{{y}^{m}}{{y}^{n}}[/latex], where [latex]m>n[/latex]. Next step - look at each part individually. Simplification can also help to improve your understanding of math concepts. See the steps to to. Kathryn teaches college math. Well, 5 is positive, so we don't need to change it. . Suppose you want the value y x. Then we simplify the terms containing exponents. Now, to multiply fractions, we multiply the numerators and the denominators separately. So, y/2 4x/1 = (y 4x)/2 = 4xy/2 = 2xy. Yes. Now, let us learn how to use the distributive property to simplify expressions with fractions. The calculator will show you all the steps and easy-to-understand explanations of how to simplify polynomials. By using the distributive property of simplifying expression, it can be simplified as. The mathematical concepts that are important in simplifying algebraic expressions are given below: The rules for simplifying expressions are given below: Follow the steps given below to learn how to simplify expressions: Equations refer to those statements that have an equal to "=" sign between the term(s) written on the left side and the term(s) written on the right side. Plus, get practice tests, quizzes, and personalized coaching to help you Simplify each expression using the zero exponent rule of exponents. . Remove unnecessary terms: If a term has a coefficient of 0, it can be removed from the expression since it has no effect on the value. BYJU'S online simplifying. Variables Any lowercase letter may be used as a variable. Math understanding that gets you The calculator will show you each step with easy-to-understand explanations . Know the order of operations. Determine mathematic problems Determining mathematical problems can be difficult, but with practice it can become easier. By using these properties, you can simplify complex expressions containing logarithms. To simplify an algebraic expression means to rewrite it in a simpler form, without changing its value. Use this, i was struggling with simplifying but this calculator has everything needed, this app was amazing and the best responses and the best Solutions I would refer this to everyone . This is the product rule of exponents. For any real number [latex]a[/latex] and natural numbers [latex]m[/latex] and [latex]n[/latex], the product rule of exponents states that. Quotients of exponential expressions with the same base can be simplified by subtracting exponents. It appears from the last two steps that we can use the power of a product rule as a power of a quotient rule. Basic knowledge of algebraic expressions is required. Check out. Estimating Square Roots | How Do You Find the Square Root of a Number? Simplify expressions with negative exponents calculator - Apps can be a great way to help learners with their math. Overall, simplifying algebraic expressions is an important skill that can help you to save time, improve your understanding of math, and develop your problem-solving skills. This website helped me pass! Ok. that was just a quick review. For those who need an instant solution, we have the perfect answer. For example, can we simplify [latex]\frac{{h}^{3}}{{h}^{5}}[/latex]? While the "Fractional Exponents" calculator and "Solve for Exponents" calculator, assist those with a more advanced understanding of exponents. For any nonzero real number [latex]a[/latex], the zero exponent rule of exponents states that. Simplifying expressions mean rewriting the same algebraic expression with no like terms and in a compact manner. Exponents Calculator Instructions for using FX Maths Pack. For example, 1/2 (x + 4) can be simplified as x/2 + 2. Simplifying radical expressions calculator This calculator simplifies expressions that contain radicals. Check out all of our online calculators here! Note: exponents must be positive integers, no negatives. A particular camera might record an image that is 2,048 pixels by 1,536 pixels, which is a very high resolution picture. Along with PEMDAS, exponent rules, and the knowledge about operations on expressions also need to be used while simplifying algebraic expressions. Homework is a necessary part of school that helps students review and practice what they have learned in class. In the denominator, I want the xs over each other and the ys over each other, so I write x^7y^3. The quotient rule of exponents allows us to simplify an expression that divides two numbers with the same base but different exponents. Here is an example: 2x^2+x(4x+3) Need more problem types? We find that [latex]{2}^{3}[/latex] is 8, [latex]{2}^{4}[/latex] is 16, and [latex]{2}^{7}[/latex] is 128. simplify, solve for, expand, factor, rationalize. If you're looking for help with your homework, our team of experts have you covered. Now, combining all the terms will result in 6x - x2 - 3x + x2. If you wish to solve the equation, use the Equation Solving Calculator. . It requires one to be familiar with the concepts of arithmetic operations on algebraic expressions, fractions, and exponents. It does not intend to find the value of an unknown quantity. On the other hand, x/2 + 1/2y is in a simplified form as fractions are in the reduced form and both are unlike terms. Notice we get the same result by adding the three exponents in one step. ti 89 algebra discovery distributive property nc discrete math practice problems rational expressions calculator using excel to find least common number from When we use rational exponents, we can apply the properties of exponents to simplify expressions. The calculator works for both numbers and expressions containing variables. . This website uses cookies to ensure you get the best experience on our website. Simplify Calculator. (10^5=) The calculator should display the number 100,000, because that's equal to 10 5. We made the condition that [latex]m>n[/latex] so that the difference [latex]m-n[/latex] would never be zero or negative. The product [latex]8\cdot 16[/latex] equals 128, so the relationship is true. Using a calculator, we enter [latex]2,048\times 1,536\times 48\times 24\times 3,600[/latex] and press ENTER. Simplify, Simplify (a12b)12(ab12) What are the steps for simplifying expressions. Do not simplify further. The procedure to use the simplifying expressions calculator is as follows: Step 1: Enter the expression in the respective input field Step 2: Now click the button "Submit" to get the result Step 3: Finally, the simplified expression will be displayed in the new window What is Meant by Simplifying Expressions? And, y/2 7/1 = 7y/2. One of the main benefits of simplifying expressions is that it can save you time and effort. The quotient rule of exponents allows us to simplify an expression that divides two numbers with the same base but different exponents. Divide one exponential expression by another with a larger exponent. To find the product of powersMultiplication of two or more values in exponential form that have the same base- [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{\left({f}^{2}\right)}^{7}}{{\left({e}^{2}\right)}^{7}}\hfill \\ & =& \frac{{f}^{2\cdot 7}}{{e}^{2\cdot 7}}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]{\left(\frac{a}{b}\right)}^{n}=\frac{{a}^{n}}{{b}^{n}}[/latex], CC licensed content, Specific attribution, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface, [latex]\left(3a\right)^{7}\cdot\left(3a\right)^{10} [/latex], [latex]\left(\left(3a\right)^{7}\right)^{10} [/latex], [latex]\left(3a\right)^{7\cdot10} [/latex], [latex]{\left(a\cdot b\right)}^{n}={a}^{n}\cdot {b}^{n}[/latex], [latex]\left(-3\right)^{5}\cdot \left(-3\right)[/latex], [latex]{x}^{2}\cdot {x}^{5}\cdot {x}^{3}[/latex], [latex]{t}^{5}\cdot {t}^{3}={t}^{5+3}={t}^{8}[/latex], [latex]{\left(-3\right)}^{5}\cdot \left(-3\right)={\left(-3\right)}^{5}\cdot {\left(-3\right)}^{1}={\left(-3\right)}^{5+1}={\left(-3\right)}^{6}[/latex], [latex]{\left(\frac{2}{y}\right)}^{4}\cdot \left(\frac{2}{y}\right)[/latex], [latex]{t}^{3}\cdot {t}^{6}\cdot {t}^{5}[/latex], [latex]{\left(\frac{2}{y}\right)}^{5}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}={\left(-2\right)}^{14 - 9}={\left(-2\right)}^{5}[/latex], [latex]\frac{{t}^{23}}{{t}^{15}}={t}^{23 - 15}={t}^{8}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}={\left(z\sqrt{2}\right)}^{5 - 1}={\left(z\sqrt{2}\right)}^{4}[/latex], [latex]\frac{{\left(-3\right)}^{6}}{-3}[/latex], [latex]\frac{{\left(e{f}^{2}\right)}^{5}}{{\left(e{f}^{2}\right)}^{3}}[/latex], [latex]{\left(e{f}^{2}\right)}^{2}[/latex], [latex]{\left({x}^{2}\right)}^{7}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}[/latex], [latex]{\left({x}^{2}\right)}^{7}={x}^{2\cdot 7}={x}^{14}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}={\left(2t\right)}^{5\cdot 3}={\left(2t\right)}^{15}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}={\left(-3\right)}^{5\cdot 11}={\left(-3\right)}^{55}[/latex], [latex]{\left({\left(3y\right)}^{8}\right)}^{3}[/latex], [latex]{\left({t}^{5}\right)}^{7}[/latex], [latex]{\left({\left(-g\right)}^{4}\right)}^{4}[/latex], [latex]\frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}[/latex], [latex]\frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}[/latex], [latex]\begin{array}\text{ }\frac{c^{3}}{c^{3}} \hfill& =c^{3-3} \\ \hfill& =c^{0} \\ \hfill& =1\end{array}[/latex], [latex]\begin{array}{ccc}\hfill \frac{-3{x}^{5}}{{x}^{5}}& =& -3\cdot \frac{{x}^{5}}{{x}^{5}}\hfill \\ & =& -3\cdot {x}^{5 - 5}\hfill \\ & =& -3\cdot {x}^{0}\hfill \\ & =& -3\cdot 1\hfill \\ & =& -3\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}& =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{1+3}}\hfill & \text{Use the product rule in the denominator}.\hfill \\ & =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{4}}\hfill & \text{Simplify}.\hfill \\ & =& {\left({j}^{2}k\right)}^{4 - 4}\hfill & \text{Use the quotient rule}.\hfill \\ & =& {\left({j}^{2}k\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1& \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}& =& 5{\left(r{s}^{2}\right)}^{2 - 2}\hfill & \text{Use the quotient rule}.\hfill \\ & =& 5{\left(r{s}^{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 5\cdot 1\hfill & \text{Use the zero exponent rule}.\hfill \\ & =& 5\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\frac{{\left(d{e}^{2}\right)}^{11}}{2{\left(d{e}^{2}\right)}^{11}}[/latex], [latex]\frac{{w}^{4}\cdot {w}^{2}}{{w}^{6}}[/latex], [latex]\frac{{t}^{3}\cdot {t}^{4}}{{t}^{2}\cdot {t}^{5}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}={\theta }^{3 - 10}={\theta }^{-7}=\frac{1}{{\theta }^{7}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}=\frac{{z}^{2+1}}{{z}^{4}}=\frac{{z}^{3}}{{z}^{4}}={z}^{3 - 4}={z}^{-1}=\frac{1}{z}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}={\left(-5{t}^{3}\right)}^{4 - 8}={\left(-5{t}^{3}\right)}^{-4}=\frac{1}{{\left(-5{t}^{3}\right)}^{4}}[/latex], [latex]\frac{{\left(-3t\right)}^{2}}{{\left(-3t\right)}^{8}}[/latex], [latex]\frac{{f}^{47}}{{f}^{49}\cdot f}[/latex], [latex]\frac{1}{{\left(-3t\right)}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}[/latex], [latex]{b}^{2}\cdot {b}^{-8}={b}^{2 - 8}={b}^{-6}=\frac{1}{{b}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}={\left(-x\right)}^{5 - 5}={\left(-x\right)}^{0}=1[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}=\frac{{\left(-7z\right)}^{1}}{{\left(-7z\right)}^{5}}={\left(-7z\right)}^{1 - 5}={\left(-7z\right)}^{-4}=\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]\frac{{25}^{12}}{{25}^{13}}[/latex], [latex]{t}^{-5}=\frac{1}{{t}^{5}}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}={\left(a\right)}^{3}\cdot {\left({b}^{2}\right)}^{3}={a}^{1\cdot 3}\cdot {b}^{2\cdot 3}={a}^{3}{b}^{6}[/latex], [latex]2{t}^{15}={\left(2\right)}^{15}\cdot {\left(t\right)}^{15}={2}^{15}{t}^{15}=32,768{t}^{15}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}={\left(-2\right)}^{3}\cdot {\left({w}^{3}\right)}^{3}=-8\cdot {w}^{3\cdot 3}=-8{w}^{9}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}=\frac{1}{{\left(-7\right)}^{4}\cdot {\left(z\right)}^{4}}=\frac{1}{2,401{z}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}={\left({e}^{-2}\right)}^{7}\cdot {\left({f}^{2}\right)}^{7}={e}^{-2\cdot 7}\cdot {f}^{2\cdot 7}={e}^{-14}{f}^{14}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]{\left({g}^{2}{h}^{3}\right)}^{5}[/latex], [latex]{\left(-3{y}^{5}\right)}^{3}[/latex], [latex]\frac{1}{{\left({a}^{6}{b}^{7}\right)}^{3}}[/latex], [latex]{\left({r}^{3}{s}^{-2}\right)}^{4}[/latex], [latex]\frac{1}{{a}^{18}{b}^{21}}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}[/latex], [latex]{\left(\frac{-1}{{t}^{2}}\right)}^{27}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}=\frac{{\left(4\right)}^{3}}{{\left({z}^{11}\right)}^{3}}=\frac{64}{{z}^{11\cdot 3}}=\frac{64}{{z}^{33}}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}=\frac{{\left(p\right)}^{6}}{{\left({q}^{3}\right)}^{6}}=\frac{{p}^{1\cdot 6}}{{q}^{3\cdot 6}}=\frac{{p}^{6}}{{q}^{18}}[/latex], [latex]{\\left(\frac{-1}{{t}^{2}}\\right)}^{27}=\frac{{\\left(-1\\right)}^{27}}{{\\left({t}^{2}\\right)}^{27}}=\frac{-1}{{t}^{2\cdot 27}}=\frac{-1}{{t}^{54}}=-\frac{1}{{t}^{54}}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}={\left(\frac{{j}^{3}}{{k}^{2}}\right)}^{4}=\frac{{\left({j}^{3}\right)}^{4}}{{\left({k}^{2}\right)}^{4}}=\frac{{j}^{3\cdot 4}}{{k}^{2\cdot 4}}=\frac{{j}^{12}}{{k}^{8}}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}={\left(\frac{1}{{m}^{2}{n}^{2}}\right)}^{3}=\frac{{\left(1\right)}^{3}}{{\left({m}^{2}{n}^{2}\right)}^{3}}=\frac{1}{{\left({m}^{2}\right)}^{3}{\left({n}^{2}\right)}^{3}}=\frac{1}{{m}^{2\cdot 3}\cdot {n}^{2\cdot 3}}=\frac{1}{{m}^{6}{n}^{6}}[/latex], [latex]{\left(\frac{{b}^{5}}{c}\right)}^{3}[/latex], [latex]{\left(\frac{5}{{u}^{8}}\right)}^{4}[/latex], [latex]{\left(\frac{-1}{{w}^{3}}\right)}^{35}[/latex], [latex]{\left({p}^{-4}{q}^{3}\right)}^{8}[/latex], [latex]{\left({c}^{-5}{d}^{-3}\right)}^{4}[/latex], [latex]\frac{1}{{c}^{20}{d}^{12}}[/latex], [latex]{\left(6{m}^{2}{n}^{-1}\right)}^{3}[/latex], [latex]{17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}[/latex], [latex]{\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}[/latex], [latex]\left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)[/latex], [latex]{\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}[/latex], [latex]\frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}[/latex], [latex]\begin{array}{cccc}\hfill {\left(6{m}^{2}{n}^{-1}\right)}^{3}& =& {\left(6\right)}^{3}{\left({m}^{2}\right)}^{3}{\left({n}^{-1}\right)}^{3}\hfill & \text{The power of a product rule}\hfill \\ & =& {6}^{3}{m}^{2\cdot 3}{n}^{-1\cdot 3}\hfill & \text{The power rule}\hfill \\ & =& \text{ }216{m}^{6}{n}^{-3}\hfill & \text{Simplify}.\hfill \\ & =& \frac{216{m}^{6}}{{n}^{3}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}& =& {17}^{5 - 4-3}\hfill & \text{The product rule}\hfill \\ & =& {17}^{-2}\hfill & \text{Simplify}.\hfill \\ & =& \frac{1}{{17}^{2}}\text{ or }\frac{1}{289}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}& =& \frac{{\left({u}^{-1}v\right)}^{2}}{{\left({v}^{-1}\right)}^{2}}\hfill & \text{The power of a quotient rule}\hfill \\ & =& \frac{{u}^{-2}{v}^{2}}{{v}^{-2}}\hfill & \text{The power of a product rule}\hfill \\ & =& {u}^{-2}{v}^{2-\left(-2\right)}& \text{The quotient rule}\hfill \\ & =& {u}^{-2}{v}^{4}\hfill & \text{Simplify}.\hfill \\ & =& \frac{{v}^{4}}{{u}^{2}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)& =& -2\cdot 5\cdot {a}^{3}\cdot {a}^{-2}\cdot {b}^{-1}\cdot {b}^{2}\hfill & \text{Commutative and associative laws of multiplication}\hfill \\ & =& -10\cdot {a}^{3 - 2}\cdot {b}^{-1+2}\hfill & \text{The product rule}\hfill \\ & =& -10ab\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}& =& {\left({x}^{2}\sqrt{2}\right)}^{4 - 4}\hfill & \text{The product rule}\hfill \\ & =& \text{ }{\left({x}^{2}\sqrt{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1\hfill & \text{The zero exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}& =& \frac{{\left(3\right)}^{5}\cdot {\left({w}^{2}\right)}^{5}}{{\left(6\right)}^{2}\cdot {\left({w}^{-2}\right)}^{2}}\hfill & \text{The power of a product rule}\hfill \\ & =& \frac{{3}^{5}{w}^{2\cdot 5}}{{6}^{2}{w}^{-2\cdot 2}}\hfill & \text{The power rule}\hfill \\ & =& \frac{243{w}^{10}}{36{w}^{-4}}\hfill & \text{Simplify}.\hfill \\ & =& \frac{27{w}^{10-\left(-4\right)}}{4}\hfill & \text{The quotient rule and reduce fraction}\hfill \\ & =& \frac{27{w}^{14}}{4}\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]{\left(2u{v}^{-2}\right)}^{-3}[/latex], [latex]{x}^{8}\cdot {x}^{-12}\cdot x[/latex], [latex]{\left(\frac{{e}^{2}{f}^{-3}}{{f}^{-1}}\right)}^{2}[/latex], [latex]\left(9{r}^{-5}{s}^{3}\right)\left(3{r}^{6}{s}^{-4}\right)[/latex], [latex]{\left(\frac{4}{9}t{w}^{-2}\right)}^{-3}{\left(\frac{4}{9}t{w}^{-2}\right)}^{3}[/latex], [latex]\frac{{\left(2{h}^{2}k\right)}^{4}}{{\left(7{h}^{-1}{k}^{2}\right)}^{2}}[/latex]. Practice your math skills and learn step by step with our math solver. Explore the use of several properties used to simplify expressions with exponents, including the product of powers, power to a power, quotient of powers, power of a product, and the zero property. At first, it may appear that we cannot simplify a product of three factors. This is amazing, it helped me so often already!

Sapphire Napa Valley Cabernet Sauvignon Adagio Vineyard Oakville 2018, Peanut Butter Whiskey And Butterscotch Schnapps, Pollock Funeral Home New Bern, Nc Obituaries, Opening Sentences For Worship Service, Articles H

Schreiben Sie einen Kommentar